Phase II study of tasquinimod in chemotherapy naïve patients with metastatic castrate-resistant prostate cancer (CRPC) - safety and efficacy analysis including subgroups

A.J. Armstrong¹, M. Haggman², W. M. Stadler³, J. R. Gingrich⁴, V. J. Assikis⁵, O. Nordle⁶, G. Forsberg⁶, M. A. Carducci⁷, R. Pili⁸

¹Duke Cancer Institute and the Duke Prostate Center, Duke University, Durham, NC, USA; ²University of Uppsala, Uppsala, Sweden; ³University of Chicago, Chicago, IL; ⁴University of Pittsburgh, Pittsburgh, PA; ⁵Peachtree Hematology Oncology, Atlanta, GA; ⁶Active Biotech, Lund, Sweden ⁷Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD; ⁸Roswell Park Cancer Institute, Buffalo, NY
Tasquinimod (TASQ) is an oral quinoline-3-carboxamide derivative that binds to S100A9 and displays anti-angiogenic properties and anti-tumor activity in prostate cancer (PC) models. S100A9 has a role in cancer through myeloid derived suppressor cells (MDSC).

TASQ:
- Inhibits tumor growth in several prostate cancer models
- Binds to S100A9 (MRP14) on myeloid derived suppressor cells (MDSC) (3)
- Inhibits the “angiogenic switch” by up-regulation of Thrombospondin-1
 - Reduces metastasis
 - Inhibits VEGF independent angiogenesis
 - Counteracts immune suppression

Presented at the Genitourinary Cancers Symposium
Background, continued

In a randomized blinded phase II study, 206 (136 TASQ, 70 Placebo) men with metastatic castrate resistant (CRPC) were assigned to TASQ/P once-daily at an initial dose level of 0.25 mg/day escalating to 1.0 mg/day over 4 weeks. The primary endpoint to demonstrate an improvement in PCWG2 criteria-defined progression at 6 months was met and presented at ASCO 2010. This poster provides an update on safety and efficacy including CRPC subgroups and laboratory findings.
Asymptomatic, metastatic castrate refractory, chemo naïve prostate cancer patients

Randomization 2:1 TASQ or placebo
Dose-escalation phase (4 weeks) 0.25 mg → 0.5 mg → 1.0 mg
(treatment at individual MTD)

Double-blind Treatment and Evaluation
(radiographic assessment every 3 months)

Disease Progression
No Progression at 6 months

Withdrawal:
- patients on TASQ treatment
- symptomatic placebo patients

Open label treatment TASQ
- Asymptomatic placebo patients
- TASQ patients non-progressive disease
Eligibility Criteria

• **Main Inclusion Criteria**
 Asymptomatic metastatic CRPC (VAS pain score ≤3)
 Evidence of metastatic disease from CT or Bone scan
 Evidence of progressive disease after castration levels of testosterone
 - *Increased serum prostate-specific antigen (PSA) levels*
 - *Progression of soft tissue or bone disease*
 Karnofsky score 70-100

• **Main Exclusion Criteria**
 Prior chemotherapy within 3 years
 Anticancer therapy (biologics or vaccines) last 6 months (bevacizumab not allowed)
 Concurrent use of other anti-cancer agents or treatments (stable doses of LHRH agonists, bicalutamide (e.g. Casodex) or other antiandrogens allowed).
Update for ASCO GU 2011

Update on Progression Free Survival (PFS) data

201 (134 TASQ, 67 Placebo) patients with a median age of 72.6 years received treatment and were evaluable. The updated analysis based on 5 additional PFS events confirmed an improved PFS of 7.6 vs. 3.3 months for pts on TASQ vs. Placebo. Most progression events in both arms were radiographic, but more pts progressed on bone scan in the placebo group. Radiographic PFS was 8.8 vs 4.4 months. Significant PFS improvements were observed in the PCWG2 risk groups with bone metastatic and visceral disease. The primary endpoint was reached – 69 vs 34 % of patients were progression free at 6 months.
PFS Kaplan Meier Curves

Fig 2. Progression Free Survival (PFS) analysis. A. PFS for all patients N=201, n=134/67 Median PFS= 7.6/ 3.3 months. B. Radiographic PFS N=201, n=134/67 Median PFS= 8.8/ 4.4 months. C. PFS for patients with Bone metastases only at baseline N=83,n=53/30 Median PFS=12.1/ 5.4 months. D. PFS for patients with Visceral metastasis at baseline N=42,A-A/P-A n=32/10 Median PFS= 6.0/ 3.0 months. Notably, placebo patients were allowed to cross over to active treatment after 6 months.

Presented at the Genitourinary Cancers Symposium
Safety and Toxicities

Fig 3. Most common AE-s and percent of patients with grade 1, 2, 3-5 in Doubleblind phase. Total number of related AE-s; TASQ 537, placebo 136. As illustrated to the right, the majority of AE-s were of grade 1 or 2.
Subgroup Analyses

![Table with Forest plot showing median PFS and Hazard Ratio (HR) with 95% CI for all patients and subgroups.]

Fig 4. Table with Forest plot showing median PFS and Hazard Ratio (HR) with 95% CI for all patients and subgroups.

Presented at the Genitourinary Cancers Symposium
Biomarker Analyses

A. Changes in CRP levels over time in the various treatment groups.
B. CRP levels in TASQ treated men with (red) or without (blue) pain in extremity grade 1-4 (Median+-SE).

Analysis of lab parameters and impact on adverse events
TASQ treatment led to a transient increase in lab markers e.g. CRP, fibrinogen, and amylase/lipase. CRP increase was associated with AE-s such as muscle and joint pain, while increased amylase was associated with a lower risk for gastrointestinal (GI) AE-s.
C. Changes in amylase levels over time in the various treatment groups (median±SE).
D. Amylase levels in patients with (red) or without (blue) GI AE grade 2-4.
Cardiac Safety

Effect on cardiac risk factors
TASQ treatment was associated with anaemia, but did not affect CV risk factors such as hypertension or QTc prolongation, and the rate of composite cardiac events was acceptably low.

Fig 6. Hemoglobin levels over time in various treatment groups.
Cardiac Safety

<table>
<thead>
<tr>
<th>AE Group</th>
<th>TASQ (N=134)</th>
<th>Placebo (N=67)</th>
<th>Open label (N=76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial thrombotic</td>
<td>4 (3%)</td>
<td>2 (3%)</td>
<td>5 (7%)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Cardio-respiratory arrest</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Atrial arrhythmias</td>
<td>8 (6%)</td>
<td>2 (3%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>5 (4%)</td>
<td>2 (3%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Cardiac failure</td>
<td>2 (1%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Venous thrombotic</td>
<td>5 (4%)</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Deep vein thrombosis</td>
<td>5 (4%)</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Cardiac tamponade</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Table 1. Most common cardiovascular events (all grades).
Thromboembolic Events Were Uncommon

- Patients experiencing DVT had relatively high baseline PSA (median 70 vs 26 ng/mL), higher mass of soft tissue lesions (median 120 vs 38 mm) and more rapidly increasing Alkaline Phosphatase (median at week 4 +48% vs +6%).

- Notably, patients on TASQ treatment had more advanced disease (median PSA 29 vs 19 ng/ml and higher incidence of visceral metastases) (4).
Age and Tolerability

- TASQ generally well tolerated but several patients terminated early due to grade 2 or 3 AE-s. Mean age of patients terminating due to AE was 74.9 years; higher than the total population (median 72.6 years).

- Patients with higher age have lower clearance - an increase in age with one year lowered the typical CL/F value with ~1.4 %.

Fig 7. PK analysis showing the relationship between age and clearance indicating a lowered clearance of TASQ and higher exposure with age.
Age and Pharmacokinetics

- Patients above 80 years old much more likely to have AE-s within the first 2 months of therapy as compared to younger patients. Patients between 75 and 80 have an intermediate risk as compared to older and younger patients.

- The majority of AE-s were observed during the first two months (the dose escalation phase), especially in the older population.

Fig 8. Time to withdrawal due to AE or AE grade 2 by Age Class for patients treated with TASQ.
Conclusions

• TASQ improved PFS in men with asymptomatic to minimally symptomatic metastatic CRPC.

• Side effects are manageable and specific AE-s can be correlated with laboratory markers. Age is a risk factor for early TASQ toxicity, perhaps due to lower systemic clearance. Individualized dosing based on tolerability is recommended and may improve long term tolerability in men over 75 years of age.

• A Phase III trial investigating TASQ in the pre-chemotherapy (docetaxel) setting in men with CRPC will be initiated during first quarter 2011 to further confirm the overall clinical benefit in this population.

The support from the Department of Defense - Prostate Cancer Clinical Trials Consortium is acknowledged.
References

1. Bratt et al, Br J of Cancer 2009 (1-8)
Acknowledgements

We would like to thank all participating patients and their families, all investigators and study staff as well as DOD PCCTC*.

Richy AGAJANIAN American Inst. Of Research, Whittier
Goran AHLGREN Universitetssjukhuset MAS, Malmö
Cal ANDREOU Andreou Research, Surrey
John ARAUJO MD Anderson Cancer Center Genitourinary Medical Oncology, Houston
Andrew ARMSTRONG Duke University Medical Center, Durham
Vasileios ASSIKIS Peachtree Hematology & Oncology, Atlanta
Laurence BELKOFF Center for Urological Care, Bryn Mawr
Guy BERNESTEIN Pacific Institute of Urology, Santa Monica
Stanley BROSMAN Vanderbilt University Medical Center,
Sam CHANG San Bernardino Urological Associates Medical Group, San Bernardino
Franklin CHU North Idaho Urology, Coeur D’Alene
William CLARK Johns Hopkins Hospital, Baltimore
Randil CLARK Pacific Clinical Center, Beverly Hills
Barrett COWAN Johns Hopkins Hospital, Baltimore
Jan-Erik DAMBER Urology Associates, P.C., Englewood
Samuel DENMEADE Urology and Urologic Diseases, Nashville
James ELIST Urology Group of New Mexico, Albuquerque
Hugh FISHER Community Care Physicians, PC, Albany
Mark FLEMING Virginia Oncology Associates, Norfolk
Jeffrey FRANKEL Seattle Urology Research Center, Burien
Russell FREID Seattle Urology Research Center, Burien
Jeffrey GINGRICH Lawrenceville Urology, Lawrenceville
Michael HAGGMAN University of Pittsburgh, Pittsburgh
Richard HARRIS Uppsala Akademiska Hospital, Uppsala
Eric HIRSHBERG Midwest Urology/RMD Research, Melrose park

Ron ISRAELI Guelph Urology Associates, Guelph
Richard KANE S. RAMINATHAN
Danny KEILLER Subramaniam RAU
Jeffrey MARKS Charles YANG
Roberto PILI Edward WOODS
Charles REDFERN Jeffrey WILLIAMS
Ilan SHAPIRA Edward WOODS
Daniel SHEVRIN Jonathan POLIKOFF

We would like to thank all participating patients and their families, all investigators and study staff as well as DOD PCCTC*.

*Department of Defense - Prostate Cancer Clinical Trials Consortium

Presented at the Genitourinary Cancers Symposium